
幂函数的课后教学反思范文
身为一名到岗不久的老师,教学是我们的工作之一,对学到的教学新方法,我们可以记录在教学反思中,那么你有了解过教学反思吗?以下是小编为大家整理的幂函数的课后教学反思范文,仅供参考,欢迎大家阅读。
幂函数的课后教学反思1在教学过程中,我类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.同学们课堂上能积极主动参与获得性质的过程,并学会处理未知问题的方法。
首先我由生活中的五个实例引入,概念过渡自然,学生易于接受。我引导学生从实例出发类比指数函数的.定义自己观察、归纳、总结概括出幂函数的定义。在概念理解上,用步步设问、课堂讨论、练习来加深理解。在这个环节上,部分学生出现了两个问题:一是把幂函数和指数函数混为一谈了;二是对y=2x2及 y=x3+2学生误认为幂函数了。针对这两个问题,我对学生强调了幂函数和指数函数的区别,并从另外一个角度(练习二)让学生去认识幂函数。
然后,让学生亲自动手画两个图象,提高学生的动手实践能力,数形结合能力。我借助电脑手段,通过描点作图,引导学生说出图像特征及变化规律,并从而得出幂函数的性质,大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。
针对这种情况,在教学中,我注意面向全体,发挥学生的主体性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性 ……此处隐藏291个字……p>幂函数是一类重要的函数,是学生在系统学习了指数函数、对数函数之后研究的又一类基本初等函数。学生已经学习了指数函数和对数函数的图象和性质,幂函数概念的引入以及图象和性质的研究较易接受。因此,在学习过程中,通过例子引入幂函数的概念之后,让学生自己看书,进行合作探究学习。
通过研究y=x,y=x2 ,y= x3,y=x ,y=x 等函数的图象和性质,完成探究问题后,让学生得出幂指数大于零和小于零两种情形下,幂函数的共性:当幂指数大于0 时,幂函数的图象都经过点(0,0)和(1,1),且在第一象限内函数单调递增;当幂指数小于0 时,幂函数的图象都经过点(1,1),且在第一象限内函数单调递减且以两坐标轴为淅近线。在教学过程中,注重从特殊到一般进行类比研究幂函数的性质,并时时与指数函数进行对比学习。
幂函数中重点研究了五个具体函数,通过研究它们来了解幂函数的性质。其中,学生在初中已学习了y=x,y=x2 ,y=x 等三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识,现在明确提出幂函数的概念,有助于学生形成完整的知识结构。
学生已经了解了函数的基本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了基本思路和方法。所以在教学过程中,先逐个画出五个函数的图象,从定义域、值域、奇偶性、单调性、过定点等方面进行分析、探究,得到各自的性质,从而再归纳出幂函数的基本性质。除内容本身外,掌握研究函数的一般思想方法也是至关重要的。从特殊到一般的思想方法,有已知到未知的方法。
学习幂函数与指数函数有联系,所以注重知识间的联系,比较知识间的区别。教学时可以组织学生对两类不同函数的表达式进行辨析。加深它们之间的理解。