《勾股定理逆定理》的教学反思
作为一名人民教师,我们要有很强的课堂教学能力,通过教学反思可以有效提升自己的教学能力,教学反思应该怎么写才好呢?下面是小编收集整理的《勾股定理逆定理》的教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
《勾股定理逆定理》的教学反思 篇1星期四上午第三节讲了《勾股定理逆定理》第一课时,课后效果和我预想的一样,由于探究内容偏多,课堂容量大,后半部分感觉仓促,留给学生的思考时间显得不足。
回头反思,这节课的设计思路比较合理:定理来源于生活,服务于生活。我由勾股定理引出一道生活实际问题,引起学生的求知欲,然后和学生分三种方法探究,得出“勾股定理逆定理”,经过课堂练习夯实基础,最后利用新知解决开课时提出的生活实际问题,首尾呼应,学以致用。
怎么避免上述授课时间紧张问题,取得更高的课堂效率呢?我简单谈两点建议,希望各位数学老师以后教此课时得到共勉。
一是在设计探究时应注重简化。我设计了三个探究:探究1是古埃及人用结绳打桩法得到直角;探究2是师生用尺规作图法得到直角;探究3是利用三角形全等的知识通过证明得到直角。现在觉得应把探究2简化,老师就“勾三股四弦五”给学生当堂做尺规作图演示,没有必要再让学生亲自作图,因为教师的演示,效果明显,学生已经理解,达到目标要求,这样就可以节约5分钟时间。
二是对互逆命题,原命题,逆命题,互逆定理,逆定理等概念的讲解可随 ……此处隐藏2295个字……问题,争先恐后地交流不同的意见和方法,收到比较好的效果。
《勾股定理逆定理》的教学反思 篇4根据学生的认知结构与教材地位,为了达到本节课的教学目标,我设计了以下几个环节:
1、创设情境,提出猜想让学生判断两位同学的画法是否都能得到斜边为10cm的直角三角形,通过对不同画法的探究,温故知新,为用构造全等三角形的方法证明勾股定理的逆定理做好铺垫、同时,引导学生从特殊到一般提出猜想。
2、证明猜想,得出新知。由于有前一环节的铺垫,通过启发、引导、讨论,让学生体会用构造全等三角形的方法证明问题的思想,突破定理证明这一难点,并适时出示课题。
3、应用训练,巩固新知为了巩固新知,灵活运用所学知识解决相应问题,提高学生的分析解题能力,我设计了三个层次的问题,以达到教学目标、第一层次是让学生直接运用定理判断三角形是否是直角三角形,掌握定理基本运用;第二层次是强调已知三角形三边长或三边关系,就有意识的判断三角形是否是直角三角形,这样既巩固了勾股定理的逆定理的应用,又为下一个层次做好了铺垫;第三层次是灵活运用勾股定理与逆定理解决图形面积的计算问题、根据学生原有的认知结构,让学生更好地体会分割的思想、设计的题型前后呼应,使知识有序推进,有助于学生的理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验、真正体现学生是学习的主人。
4、归纳小结,形成体系让学生交流学习的收获、课堂经历的感受和对数学思想方法的感悟体会等、帮助学生内化新知,优化学生的认知结构,形成能力,减轻课后负担。
5、布置作业,课外延伸分层布置作业,目的是让不同的学生得到不同层次的发展。